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Abstract

We consider optimizations that are required for efficient execution of code
segments that consists of loops over distributed data structures. The PARTI A
execution time primitives are designed to carry out these optimizations and'
can be used to implement a wide range of scientific algorithms on distributed
memory machines.

These primitives allow the user to control array mappings in a way that
gives an appearance of shared memory. Computations can be based on a global
index set. Primitives are used to carry out gather and scatter operations on
distributed arrays. Communications patterns are derived at runtime, and the
appropriate send and receive messages are automatically generated.
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1 Introduction

Efficient implementation of scientific codes on distributed memory architectures re-
quires special techniques both at run-time and at compile-time. The PARTI (Parallel
Automated Runtime Toolkit at ICASE) system is a set of primitives that can be used
to implement a wide range of scientific algorithms on distributed memory machines.
These primitives support various run-time operations required by programs that
make use of an embedded shared name space on a distributed machine. The user
can carry out gather and scatter operations on distributed arrays using a global in-
dex set. Communications patterns are derived at runtime, and the appropriate send
and receive messages are automatically generated.

The PARTI primitives are initialized by specifying a mapping into distributed
memory for each globally defined multidimensional array. The primitives include
procedures that allow one to scatter and gather array elements in the distributed
memory. The PARTI tools are organized into two levels. The lower level supports
memory operations such as scatters and gathers across processors. The higher level
binds mapping information to distributed arrays and uses this information to call the
lower level primitives. The primitives allow the storage of information about memory
access patterns so that memory operations with the same address calculations need
not repeat these calculations. Send/receive schedules are generated for memory
operations. The schedules may be stored and reused as well. This is particularly
important for the implementation of iterative algorithms.

The ideas incorporated in PARTI are specifically aimed at computations on dis-
tributed memory machines in which the structure of the computation depends on
the input data. Run-time support must be incorporated as part of the distributed
implementation of such computations. Directly incorporating the primitives into
applications programs allow investigation of the usefulness and relevance of various
optimizations. In this paper we demonstrate and benchmark these primitives using
two different programs. The first is an adaptive method for solving partial differential
equations, the second is a kernel from an unstructured mesh code.

1.1 Related Research

Williams [16] describes a programming environment for calculations with unstruc-
tured triangular meshes using distributed memory machines. In (16], collections
of distributed array accesses are translated into an efficient set of inter-node mes-
sages. Similar mechanisms for translating an irregular pattern of array accesses into
inter-node mcssages have been proposed in order to make it possible to efficiently
distribute loops where some array references are made through a level of indirection.
Work on this topic was presented by the present authors in [12],[8], [93 as well as by
Mehrotra and Van Rosendale [7, 6].

In this paper, we present primitives that can be used directly by programmers
that allow users to carry out gather and scatter operations over global index sets on
distributed arrays.

Callahan and Kennedy [3], Rogers and Pingali [10], and Rosing and Scbnabel [11]

suggest execution time resolution of communications on distributed machi; , Nnne
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of these utilize information on repeated patterns of communications. The Linda
system[I] provides an associative addressing scheme by which a reference to variables
can be resolved at execution time. This in essence provides a shared name space for
distributed memory machines; however, the shared name space does not allow users
to determine how data is to be partitioned between processors. The costs associated
with this lack of data locality can be extremely high in some cases [12].

2 PARTI Primitives

The PARTI primitives currently consist of two levels. The most fundamental of
the primitives are the Level 0 Primitives. They consist of routines to gather and/or
scatter (read and write) values to elements of one dimensional arrays alocJ defined on
each processor j. Each aloc i is local to processor j; it is not viewed as a distributed
array by the Level 0 Primitives.

2.1 Level 0 Gather and Scatter

Level 0 gathers and scatters are accomplished by using three routines: Scheduler,

Gather Exchanger, and Scatter Exchanger.
Scheduler on processor P' is passed a list of indices Kj into each aloc from which

data is to be fetched and produces a schedule S that is used by both exchangers.
On processor P', Gather Exchanger inputs

1. a buffer into which the fetched elements are to be placed

2. the location of array aloc'

3. the schedule S produced by Scheduler

Gather Exchanger executes sends and receives that fetch from each processor P' the
appropriate elements from the array alod' Then it places these elements into the
user-supplied buffer.

Scatter Exchanger is passed

1. a buffer from which each scattered datum is to be obtained

2. the location of array aloei

3. the schedule S produced by Scheduler

Scatter Exchanger executes sends and receives that put on each processor P' the
appropriate elements from the buffer. Then Scatter Exchanger places these elements
into the appropriate elements of array alod.
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2.1.1 Functioning of the Scheduler and Exchangers

Exchange procedures for both the scatter and the gather have three stages. They
permute data into buffers to be sent. They carry out the needed communication,
then they perform another permutation.

The scheduler first determines how many messages each processor must send
and receive during the data exchange phase. Defined on each processor P' is an
array nmsgs'. Each processor sets its value of nmsgs'(j) to 1 if it needs data from
processor j or to 0 if it does not. The scheduler then replaces nmsgs with the element-
by-element sum nmsgsl(j) -- E, nmsgsk(j). This operation utilizes a function that
imposes a fan-in tree to find the sums. Since the resulting sum is kept in nmsgs i ,
at the end of the fan-in on every processor, nmsgsl(j) is the number of messages
that processor P' must send during the exchange phase. Next, each processor sends
a request list to every other processor. The request list sent from processor PP to
processor pq contains the indices of data needed by processor PP that are stored on
processor pq.

The number of non-empty request lists each processor will receive is equal to the
number of messages that the processor will send in the exchange phase. Each request
list is placed in an array indexed by the processor from which the list came. When
the scheduler is finished, each processor has an array of request lists obtained from
other processors. The Jth element of this array contains the request list obtained from
processor j. At this point in the execution, each processor P' knows which elements
of aloc' must be sent to other processors. This information is used to generate the
schedule S of pairs of send and receive statements. These send/receive pairs will
exchange the requested data for either a gather or a scatter. Thus, both the gather
and the scatter call the exchanger routine. The exchanger is passed the schedule S
with the required buffer space. It then carries out the required communication.

2.1.2 Additional Exchangers

In addition to the Level 0 exchanger, we have found it useful to develop hybrids of
the gather and scatter that perform remote operations on distributed array data.
For example, the scatter-add adds data elements D1 , ..., D n to elements alocJ(kj)

aloci(knj). Similar exchanges perform distributed subtractions, multiplications and

divisions.

2.2 Level 1 Primitives

The Level 1 Primitives are the user interface between an application code and the
Level 0 Primitives. Use of Level 1 Primitives allows the dynamic dllocation of dis-
tributed multi-dimensional arrays and supports data transfer between these arrays.
The Level 1 Primitives consist of declaration procedures and ,f communication pro-
cedures. The intermediate level PARTI declaration procedures allow the user to
declare a dynamically allocated distributed array in a way that allows specification
of how the array is to be partitioned between processors. Coupled to these distributed
array declarations are the intermediate level gather and scatter procedures. These

procedures are designed to allow users to fetch or store array elements from the
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distributed memory in a way that does not require the user to keep track of where
array elements are stored. This makes it relatively straightforward to write codes
that allow data structures to be repartitioned during program execution. All mem-

ory is allocated or declared in the programs that call PARTI procedures; memory
locations are passed to the procedures that perform array initializations. Users write
programs that contain a combination of

1. code written to execute on individual processors

2. communications calls that consist of gathers or scatters to distributed arrays

3. communication calls that consist of zero-level gathers or scatters

4. send and receive message passing calls

2.2.1 Level 1 Declaration Procedures

The declaration procedures in the PARTI primitives allow the user to describe how
a data array is mapped into the distributed memory of the machine. This is ac-
complished by specifying the mapping of the data to a virtual processor array, then
describing the relationship between the virtual processor array and the original pro-
cessor array.

Specified in an array initialization is a processor grid G of arbitrary dimension and
size. This processor grid is automatically gray coded in the current implementation.
Embedded in G is an array of virtual processors V. The embedding is specified by
the user. This two-stage specification of processor sets allows embedding different
distributed arrays into different subarrays V of G. Note also that different distributed
arrays can be initialized with different processor grids G or with the same G but with
different virtual processor subarrays V.

Data arrays are mapped onto virtual processor subarrays in any one of a num-
ber of ways. We support tensor product mappings in which each array dimension
is partitioned independently or is left undistributed. Following [7], we support
blocked partitionings where each processor receives an equal number of contiguous
array elements along a given dimension, and cyclic distributions in which elements
are distributed stripped fashion across the processors. We also support enumerated

distributions in which mappings are supported by distributed translation tables. The
number of dimensions of an array to be distributed must match the dimensionality
of G.

2.2.2 Level 1 Communication Procedures

The Level 1 Gather exchanger and Scatter exchanger routines allow communi-
cation of user data based on the global index set. The Level 1 Scatter Exchanger
inputs lists of distributed array indices and values. It places the values in the dis-
tributed memory locations specified by the indices (and the initially supplied array

mapping). The intermediate level Gather Exchanger inputs lists of distributed array
indices along with a pointer to a memory buffer in the calling processor. Data values
from the appropriate distributed memory locations are obtained and placed in the
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calling processor's buffer. An initialization or Scheduler procedure call is required
for Gather exchanger or Scatter exchanger. The initialization procedure precom-
putes the locations of the data that will to be sent and received by each processor.
This initialization is needed only once-it may be reused any number of times. The
initialization will be described first.

The initialization combines the mapping information provided by the declaration
routines with a specific list of global indices. The result is a set of communication
calls coupled with some pre- or post-movement of the data (for the gather and scatter,
respectively). The communication plus movement is executed when the gather or
scatter is called.

Each array A distributed with the Level 1 Primitives is treated by the Level 0
routines as a set of aoc arrays defined on each processor. Elements of A C-:e gathered
by calculating corresponding indices of aloc arrays and then executing a Level 0
gather.

The index of a D-dimensional array is translated to a physical processor p and
an index i to aoc. Index i is generated from the user-specified index by using
the mapping from the data to the virtual processor array. The physical processor
P is determined by locating the virtual processor in V, then using the embedding
information to obtain the position in G. The physical processor corresponding to the
calculated position in G can be obtained from the gray code. Notice that the phys-
ical memory locations of the various alocs are not used directly in the calculations.
Rather, the index i is passed to processor P. This has the advantage of allowing each
processor to store its data in different physical memory locations.

The steps involved in performing a gather on an index list L into A are outlined
here. Translations described above produce a list of indices Li and a list of processors
LP that correspond to L. These lists are used to determine the scheduling of a low
level gather and are sorted by processor. The sort results in a permutation array
LPERM that reorders the elements of L. Since moving and/or copying of data is
avoided, the efficiency of the gather is increased. A Level 1 gather is performed from
executing the scheduled zero-level gather and then using LPERM to reorder the values
obtained by each processor. In many scientific programs it is also useful to execute
isomorphic gathers on different arrays. Recall that actual memory addresses are only
bound to the intermediate and the zero-level primitives after all of the optimizations
are carried out. Consequently, the same zero-level gather schedule and the same
permutation array LPERM can be associated with a number of different distributed
arrays. Setup costs are amortized when the same pattern of communication is carried
out many times.

The Level 1 Gather Exchanger and Scatter Exchanger procedures are designed
to allow users to fetch or store array elements from the distributed memory in a way
that does not require the user to keep track of where array elements are stored. It
is relatively straightforward to write codes that allow data structures to be reparti-
tioned during program execution. Declaration procedures can be called to repartition
the distributed data, and the application can be written in a partitioning-independent
manner.
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Figure 1: Two-mesh refinement.

3 The Use of PARTI Primitives in Adaptive and
Unstructured Applications

We present one complete code and one computational kernel to motivate the dis-
cussion of our execution time optimizations and the PARTI (Parallel Automated
Runtime Toolkit at ICASE) primitives.

3.1 Adaptive Mesh Partial Differential Equation Solver

The first example is a technique for adaptive refinement. The method will be de-
scribed in the context of the solution to

Ut + f (u). +I g(u)y EAU = 0

in the presence of a shock where the profile (detailed shape) of the shock is desired.

For the method discussed here, resolution of the profile implies that a highly refined
grid must be used in a neighborhood of the shock. The theory behind the algorithm
has been described (43 so only an algorithmic description of the method will be
presented here. In this algorithm, the structure of the computations changes with
time and a non-uniform communication pattern arises due to the sharing of data
between grids.

The method initially computes the solution on a coarse mesh. An error estimator
is then applied to determine the regions that will be covered by a refined mesh. An

example mesh from this two-level refinement is shown in Figure 3.1.
The solution is time-dependent. Time-marching on the refined mesh is performed

by taking many (e.g. 100) time steps on the refined mesh for a single coarse-grid

time step. Let U represent the solution, k be the temporal step-counter, and (i,j)
represent the discrete location on a spatial grid. The subscripv, ,- and r are used
to refer to the coarse and refined meshes, respectively. The ddLa structure used
for the coarse mesh is a two-dimensional array. The solution on the refined mesh is

represented by a three-dimensional data structure in which the third index rep'
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a block of the refined mesh (each block corresponds to a single coarse grid square),
and first two indices represent the spatial location within the block. The general
structure of the kernel is outlined in Algorithm 1. In general, a shock moves and

Fork,= 1 toK
I. Sweep over the coarse mesh

A. Compute U,.
B. Flag region that should be refined.

II. If flagged region is not empty.
A. Modify shape of refined region
B. Interpolate boundary values for U, from U,.
C. For k,= 1 to K,

1. Sweep over the refined mesh
2. Share values between blocks in U,

D. Inject values of refined region into coarse grid

ALGORITHM 1 Two-mesh algorithm.

changes shape. Thus, the refined mesh will be dynamic - its location, shape, and size
all change. This means that both the communication pattern within a distributed
mesh and the relationship of the two meshes will change during the execution of the
program.

Classes of inter-processor communication needed to implement Algorithm 1 in a
distributed computing environment are;

1. communication involved in coarse mesh sweeps (Step I.A.),

2. communication involved in fine mesh sweeps (Step II.C.1.),

3. sharing of values between the coarse and fine meshes(Steps II.B. and II.D.),
and

4. communication required to modify the shape of the refined region (Step II.A.).

In our implementation of Algorithm 1, the PARTI primitives are used in all but the
last set of communications.

3.2 Unstructured Mesh Kernel

Figure 2 depicts a schematic outline of a kernel from a fluid dynamics simulation, In
Section 4.2 we will present experimental results obtained from a similar but slightly
more complex kernel. The kernel is based on an algorithm which fills a computational
domain with irregular polygons. Heuristics designed to ensure that the governing par-
tial differential equation is solved with an approximately equal accuracy throughout
the computational domain determine the area and shape of the polygons. The data
structures used in solving the problem represent a bidirectional graph where vertices
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For i=1 to Number-Edges

I. VA = yold(node(i,1))

vB = yold(node(i,2))

II. Calculate flux using VA, Vy.

This calculation also uses edgedata(i,1),.., edgedata(i,SMALL)

III. y(node(i,1))= y(node(i,1)) + flux

y(node(i,2)) = y(node(i,2)) - flux

Figure 2: Outline of Computational Fluid Dynamics Unstructured Mesh Kernel

represent polygons and edges represent adjacency of the polygons. Sweeps over the
polygons are accomplished by traversing the edges of this graph. In these codes we
solve for equation values at graph vertices.

The kernel outlined in Figure 2 computes the flux across each graph edge. The
indices of the two vertices connected by the j th graph edge are denoted by node (j , 1)
and node (j, 2) in Figure 2. The computation of the flux terms requires yold (node (i, 1))
and yold(node(i,2)) (step I in Figure 2). The computation also requires other in-
formation concerning graph edge i (step II in Figure 2). In this example, we assume
that data pertaining to edge i is placed in row i of edgedata. In step III, flux is
added to y(node(i,1)) and flux is subtracted from y(node(i,2))

It is necessary to decide how the parallel loop iterations for index i are to be
partitioned between processors. We must also specify how the data in arrays y and
yold should be partitioned. No matter how we partition loop iterations and data,
the structure of the problem requires that we access off-processor elements of y and
yold. On the other hand, edgedata(i,j) and node(i,j) (j = 1,2) are used only
in the ith parallel loop iteration so these arrays can be partitioned so that only local
array accesses are needed.

In this kernel, the dependencies between elements of arrays y and yold are deter-
mined by integer array node. We therefore cannot accurately predict what data must
be prefetched until the program executes. On distributed machines, it is typically
very inefficient to fetch individual off-processor data as a need for these elements is
encountered because of high communications latencies. We will use the level 0 prim-
itives to allow us to preschedule the communications needed to efficiently prefetch
off-processor data.

3.3 The Preprocessing Phase

In Figure 3, we outline the preprocessing needed to distribute the computation
depicted in Figure 2. In this example, assume that y and yold are mapped in an
identical manner. We also assume that Local(x) and Processor(x) are functions that
return the processor and local index associated with the distributed array element



9

I. For all edges i assigned to processor P

if Processor(node(i,1)) j P

concatenate Processor(node(i,1)) to ProcA

concatenate Local(node(i,1)) to LocalA

if Processor(node(i,2)) / P

concatenate Processor(node(i,1)) to PrOCB

concatenate Local(node(i,1)) to LocalB

II. Call Level 0 Scheduler with LocalA and ProcA (schedule SA)

Call Level 0 Scheduler with LocalB and PrOCB (schedule SB)

Figure 3: Preprocessing Unstructured CFD Kernel

x. In this example, we use only the level 0 primitives.
In the first step (step I in the figure) we sweep through the edges assigned to

processor P and generate lists of off-processor references into distributed arrays y and
yold. On processor P, the arrays ProcA and LocalA are used to store the processor
and local array index that corresponds to each off-processor reference made by P to
y(node(i,1)) and yold(node(i,1)). Arrays PrOCB and LocalB are used to store
off-processor references made by P to y(node(i,2)) and yold (node (i, 2)). In step
II. in Figure 3, the level 0 scheduler is called with the lists of processors and local
indices associated with the first vertex (ProcA and LocalA). The level 0 scheduler
is called again with the analogous lists associated with the second vertex. The two
level 0 scheduler calls produce schedules SA and SB respectively.

Once the schedules SA and SB have been obtained, we can begin the sweep
over the graph edges. The schedules obtained above can be reused as long as the
assignment of edges to processors is not altered and values assigned to the inte-
ger array node are not changed. In step I in Figure 4, copies of data from off-
processor elements of array yold are obtained and put into arrays read - buff erA
and read - bufferB. In step II in this figure, we loop over all edges assigned
to processor P. In step IIA, when yold(node(i,l)) is assigned to P, we can assign
yold(Local(nod-.(i,1))) to VA. When yold(node(i,1)) is stored off-processor, VA must
be obtained from the buffer read - buff erA. The analogous conditional assignment
is carried out for vB in step IIB. In step IIC the flux term is computed using VA and v

and edgedata(i,1),. . . ,edgedata(i,SMALL). In step IID operations on elements
of y local to processor P are preformed. Operations on non-local elements of y are de-
ferred. For non-local elements of y assignments are made to buffers write - buff erA
and to write - bufferB. Finally in step III, the calculated flux elements are added
and subtracted from the appropriate off-processor array elements through the use
of the scatter-add and scatter-subtract exchangers. Note that we can again use

schedules SA and SB.
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I. Call Level 0 Gather Exchanger using (schedule SA),
place data in read - bufferA

Call Level 0 Gather Exchanger using (schedule SB),
piace data in read - bufferB

II. For all edges i assigned to processor P

A if Processor(node(i,1)) = P

VA = yold(Local(node(i,l))

otherwise

VA = read - buff erA(Acount)

Acount = Acount + 1

B. if Processor(node(i,2)) = P

vp = yold(Local(node(i,2))

otherwise

VB = reac. - buff erB(Bcount)

Bcount = Bcount + 1

C. Calculate flux using vA, vB.

This calculation also uses edgedata(i,1),.., edgedata(i,SMALL)

D. if Processor(node(i,1)) = P

y(Local(node(i,1)) = y(Local(node(i,1)) + flux

otherwise

write - bufferA(Lcount) = flux

if Processor(node(i,2)) = P

y(Local(node(i,2)) = y(Local(node(i,2)) + flux

otherwise

write - bufferB(Bcount) = flux

III. scatter-add exchanger called using schedule SA and write - buf erA

scatter-subtract exchanger called using schedule SB and write - buff erB

Figure 4: Unstructured Mesh CFD Kernel
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4 Experiments

The experiments described in this paper used either a 32 processor iPSC/860 machine
located at ICASE at NASA Langley research center or a 128 processor iPSC/860 ma-
chine located at Oak Ridge National Laboratories. Each processor had 8 megabytes
of memory. We used the G:eenhill 1.8.5 Beta version C compiler and the Greenhill
1.8.5 Beta version 4.1 Fortrai compiler to generate code for the 80860 processors.

4.1 Primitives Benchmark Timings

We first measure the time required to carry out level 0 and level 1 Scheduler, Gather
Exchanger and Scatter Exchanger procedure calls. We use the level 1 initialization
primitive to declare a 128 by 128 element distributed array of single precision num-
bers. We allocate four processors configured in a 2 by 2 grid G and allocate an array
block to each processor.

We use the level 1 primitives to repeatedly exchange information between two
processors in the grid. We first scatter and then gather lists of array elements. In
this experiment, we chose array elements in n by n sub-blocks between the upper left
hand corner and the lower left hand corner of G. In performing this experiment, we
measure the time required to carry out the following procedure calls:

1. Level 0 Scheduler

2. Level 0 Scatter

3. Level 0 Gather

4. Level 1 Scheduler

5. Level 1 Scatter

6. Level 1 Gather

7. iPSC/860 supplied send and receive pairs that exchange 4n2 bytes of data

In Table 1 we depict the results of these experiments. We present the time (in
milliseconds) required to carry out the requisite data exchange using send and receive
messages. We then present the ratio between the time taken by PARTI primitive calls
and the time taken by the equivalent send and receive calls. Table 1 only presents
Gather Exchange and Scheduler calls. The Level 0 and Level 1 Scatter Exchange calls
were also timed, the results for each Scatter Exchange call were virtually identical
to that of the corresponding Gather Exchange call.

We first note that for relatively large amounts of data, a Level 0 Gather Exchange
takes a factor of 1.2 more time than the corresponding send/receive pair. A Level 1
Gather Exchange takes a factor of 1.6 more time than the corresponding send/receive
pair. Again, for relatively large amounts of data, it costs about as much to schedule
a message using the Level 0 primitives as it takes to send the message using send
and receive messages. In contrast, the Level 1 Scheduler is an order of magnitude
more expensive than the corresponding send/receive pairs. This relatively high cost
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Table 1: Overheads for Level 0 and Level 1 Primitives
Number of Send Level 0 Level 1 Level 0 Level 1

Data Rer r1. C,.'per Gather Scheduler Scheduler
Elements '- (ratio) (ratio) ratio

100 1.2 2.1 7.0
400 1.3 1.4 9.2
900 1.5 1.3 10.7

1600 1.6 1.3 11.2
2500 1.6 1.1 11.1
3600 .2 i 1.6 1.0 11.2

is caused by the integer operations needed to identify each reference to a distributed
two dimensional array with a processor and local storage location.

4.2 Kernel from Unstructured Mesh Code

We used an unstructured mesh that was generated to carry out an aerodynamic

simulation involving a multielement airfoil in a landing configuration [5]. The un-
structured mesh consists of a highly non-uniform scattering of mesh points joined
together by line segments to form a set of triangular elements. The algorithm used is
the Delaunay Triangulation algorithm [13]. Details of this mesh generation process

can be found in [5]. The mesh used in this problem had 11143 vertices, and is shown
in Figure 5. The computational algorithm we study computes convective fluxes using

a method based on Roe's approximate Riemann solver [14], [15].
The computational kernel used in this experiment is very closely related to the

kernel described in Figure 2. In place of each of the arrays y and yold found in
the kernel described in Section 3.2, we have four different arrays Yp, yu, yv, yp and

yo1dp, yo1d,, yoldv, yo1dP, respectively. These represent the density, pressure, and
velocity components of the solution. Each call to an exchanger in Figure 4 is conse-
quently replaced by four exchanger calls. Since the data access patterns for each of
these four arrays are identical, we still need only call the scheduler twice, once with

PrOCA and LocalA and once with ProcB and LocalB.

The original program was written in Fortran, we initially extracted the computa-
tional kernel and produced a sequential C version of the kernel. The multiprocessor

codes developed were also written in C. When partitioning this kernel, we made
only modest efforts to reduce volume of needed communication and to balance load.
When we employ P processors, we partition the problem domain into P strips. All
the vertices Vs in the Sth strip are assigned to a single processor. The strips are
chosen to evenly partition the sum of the number of edges associated with each Vs.
In order to allow us to use the Level 0 primitives, we renumbered the mesh points so
that contiguously numbered mesh points are assigned to a processor. If both vertices
comprising an edge were assigned to a processor P, that edge was also assigned to P.
If the vertices v, and v 2 comprising an edge were assigned to two different processors
P and Q respectively, we assigned the edge to processor Q.

We measured the time required for an iPSC/860 multiprocessor to compute the
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Figure 5: Unstructured Mesh for Multielement Airfoil



14

parallelized computational kernel as well as the time needed to carry out the prepro-

cessing and communications steps outline in Section 3.2.
In Table 2 we first report the computational rate in Mflops for the parallelized

code on 2 through 64 processors, along with a separate sequential version of the kernel

timed on a single iPSC/860 node. The computational speed ranged from 3.2 Mflops

for a single node to 87.3 Mflops on 64 nodes. We next depict the total time required
to generate lists of off-processor references and to carry out the Level 0 scheduler calls
(Steps I and II, Figure 3). The cost of finding the processor number and the local

index number associated with the vertices in each edge took a substantial portion of
this preprocessing time. For two processors the total preprocessing was 198 millisec-
onds. Of this total preprocessing time, 181 milliseconds was required for translating
vertices to processors and local indices, and only 17 milliseconds was needed both to
form lists of off-processor references and to call Level 0 schedulers (refer to Table 2).
When 64 processors were used, total preprocessing required 23 milliseconds, of which
16 milliseconds was required for forming the lists of off-processor references and for
calling the Level 0 schedulers.

As we mentioned in Section 3.2, the preprocessing only needs to be carried out
once and can be amortized over many unstructured mesh flux calculations. The time
required to carry out the flux calculations (Figure 4), is given as total kernel time
in Table 2. Note that total kernel time does not include the preprocessing cost. The
time required for preprocessing ranges from 21 % of the time needed to compute
the computational kernel when 2 processors were used to 35 % of the cost when
we used 64 processors. Finally, we report the amount of time taken by the Level
0 exchangers (Steps I and III in Figure 4. Communication costs ranged from 2%
to 61% of the total cost needed for the kernel computation for 2 and 64 processors
respectively. The time needed for communication in the kernel increases with the
number of processors, the communication time reaches a plateau of approximately
40 milliseconds for 32 and 64 processors. This communication time could probably
be significantly reduced were we to partition the domain in a way that required a
smaller volume of communication. While the Level 1 primitives embed data arrays
into processor arrays using a gray code, the Level 0 primitives do not provide support
for such an embedding. The increase in communication time from 2 to 32 processors
is largely due to the non-local communication pattern [2]; we would expect that

gray coding would improve performance.
We can define parallel efficiency for a given number of processors P as the sequen-

tial time divided by the product of the execution time on P processors times P. In
Table 3 we depict under the heading of single sweep efficiency, the parallel efficien-
cies we would obtain were we required to preprocess the kernel each time we carried
out calculations. In reality, preprocessing time can be amortized over multiple mesh

sweeps. If we neglect the time required to preprocess the problem in computing
parallel efficiencies, we obtain the second set of parallel efficiency measurements pre-
sented in Table 3. The amortized parallel efficiencies we obtain range from 99.7 for
2 processors to 44.4 for 64 processors.

The processor architecture of the Intel-2/860 includes a 8K byte data cache.
We can anticipate that for a fixed sized problem, the rate of computation on each
node will tend to increase with concurrency. We quantified the performance effects
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Table 2: Timings for Roe's Approximate Riernann Solver of Unstructured Mesh (in
microsecs)
Number of Mflops Total Form off-processor Total Kernel Communicatinn
Processors Preprocessing Lists, Schedule Time in Kernel

Time(ms) Time (ms) Time(ms) Time(ms)
1 3.1 - 1845
2 6.1 198 17 925 17
4 11.8 105 13 482 27
8 22.0 56 9 258 31
16 38.9 32 8 146 36
32 63.1 25 12 90 41
64 87.3 23 16 65 40

Table 3: Parallel Efficiencies for Roe's Approximate Riemann Solver of Unstructured
Mesh

Number of Single Sweep Amortized Single Processor
Processors Efficiency Efficiency Speed (Mflops)

1 100.0 100.0 3.08
2 82.1 99.7 3.17
4 78.6 95.6 3.17
8 73.4 89.3 3.18
16 64.8 80.0 3.20
32 50.1 64.1 3.23
64 32.8 44.4 3.24

of the data cache by employing the sequential program to sweep over the edges
that we assigned to processor 0 when we partitioned the problem between various
numbers of processors. In Table 3, we depict the results we obtained. The rate of
computation was 3.08 Mflops when we calculated the flux for the entire problem. The
computational rate increased monotonically as the size of the sub-problem assigned
to processor 0 decreased, reaching 3.24 Mflops in the 64 processor case.

4.3 Computational Results for Domain Decomposition Al-
gorithm

We present computational results for the parallelized domain decomposition algo-
rithm. This domain decomposition algorithm decides when to refine the coarse mesh
using an error estimator based on the first and second derivatives of the solution [4].
This program was written in Fortran.

Table 4 depicts the total computation time in seconds required to run the ex-
ample problem with the tolerance (TOL) for the second derivative set to 21. The
computations were carried out for a total of 440 coarse-grid time steps. Due to
memory constraints, we we unable to run this problem on fewer than eight proces-
sors. An conservative lower bound estimate of the sequential time th,.. ,,d be
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Table 4: Adtp'ive Mesh Solver- Timings (seconds)

Number of Total Total Scheduling Gather/Scatter
Processors Time Time Time

Time(ms) (seconds) seconds
1 5632*

8 794 4 65
16 417 6 40
32 248 10 27

required to solve this problem was obtained by generating S, the sum of the time
all processors spent in sweeps over the fine mesh. S includes no communication or
primitive calls and the code executed has the same number of operations as would a
sequential sweep over a fine mesh. The 8 processor timing took 3.2 times as long as
the 4 processor timing; the ratio between the 32 processor timing and S was 22.7.

We also measure the total time required by all Level 1 schedule procedure calls.
The scheduling took very little time; the overhead for scheduling ranged from 0.5 %
of the total time (on 8 processors ) to 4.0 % of the total time (on 32 processors). This
increase in the cost of the Scheduler with increasing numbers of processors can be
explained by the Scheduler's global communications phase discussed in Section 2.1.1.
Finally we measured the time required for carrying out gather/scatter procedure
calls. The time required for the gather/scatter procedure calls ranged from 8 % to
11 % of the execution time.

In Table 5 we depict the results obtained from running the example problem on
32 processors with a range of second derivative tolerance (TOL) values; the amount of
refinement increases as TOL decreased. These problems were all continued for a total
of 440 coarse-grid time steps. In Table 5 we see that for problems in which there was
less refinement, the Level 1 scheduler required a larger proportion of the total time.
The ratio of computation to communication time did not change significantly with
the amount of refinement.

The refined mesh blocks were distributed among processors in a round robin

fashion. We consequently expect the ratio of computations to data elements com-
municated to remain roughly constant. As the number of refined blocks increases,
we expect that each processor will have to communicate with increasing numbers
of other processors. A more sophisticated strategy for assigning refined blocks to
processors would be likely to result in lower communication times both by reducing
the volume and increasing the locality of communications.

The Level 1 Scheduler required only 4 % of the total time when TOL was equal
to 21 but the Level 1 scheduler required 10 % of the total time when TOL was equal
to 27. As stated above, the scheduler has a global communications phase whose
cost does not depend on the amount of data to be communicated by each processor.
The Estimated Optimal Computation time depicted in Table 5 is S divided by the
number of processors. This gives a rough estimate of the time that would be required
to solve this problem were we to have attained linear speedup.
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Table 5: Adaptive Solver- Varying Tolerance (32 processors)
Tolerence Total Est. Optimal Scheduling Communication

Time Comp Time Time Time
(seconds) (seconds) (seconds)

21 248 176 10 27
23 186 130 9 19
25 130 91 7 15
27 92 57 6 9

5 Conclusion

The ideas incorporated in PARTI are specifically aimed at computations on dis-
tributed memory machines in which the structure of the computation depends on
the input data. Run-time support must be incorporated as part of the distributed

implementation of such computations.
The PARTI primitives allow the user to describe how a data array is mapped

into the distributed memory of the machine. This is accomplished by specifying the
mapping of the data to a virtual processor array, then describing the relationship be-
tween the virtual processor array and the original processor array. These primitives
carry out scheduling operations that make it possible to efficiently carry out gather
and scatter operations on distributed arrays using global indices. To illustrate the
performance tradeoffs encountered in carrying out these optimizations, we presented
benchmark results from an unstructured mesh kernel, and an adaptive partial dif-

ferential equation solver. Our results suggest that these primitives carry out needed

optimizations at a relatively low cost.
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